
Chapter 1

The Bohr Atom

1 Introduction

Niels Bohr was a Danish physicist who made a fundamental contribution to our
understanding of atomic structure and quantum mechanics. He made the first
successful attempt at modeling the hydrogen atom by assuming that the electron
executes orbital motion about the proton (i.e., the nucleus). Assuming that the only
force between the electron and the proton is the electrostatic force, and applying
Newton’s 2nd law, he arrived at the following equation:

∑
F = ma → e2

4πεor2 = m
v2

r
(1)

where m, v, and r, are the mass, velocity and radius of the electron moving in
a circular orbit about the proton. Note: we assume that me/mp � 1, such that
position of the proton remain essentially motionless. Simplifying Eq. 1, we find the
following:

e2

4πεo
= (mvr) v (2)

Up until this point, we have applied only classical physics. Furthermore, classical
physics would predict that this simple planetary model would cause the electron
to continually emit its kinetic energy until the electron’s orbit completely collapses
into the proton. A new assumption must be added to this model in order to keep
the atom stable, otherwise, we would not be here. At this point, Bohr made a
significant contribution by concluding that the electrons would not have to radiate
their kinetic energy if the orbit of the electron were such that its angular momentum
L is quantized.

L = mvr = n~ (Bohr’s postulate) (3)

where n = 1, 2, 3, . . ., and ~ is equal to Planck’s constant h divided by 2π. Planck’s
constant is h = 6.626× 10−34 J·s.

1



2 Key features of the Bohr Model

Using the model described in the introduction, we are prepared to calculate some
key features of the hydrogen atom and compare them with experimental measure-
ments. Substituting Eq. 3 into Eq. 2, we obtain the following:

e2

4πεo
= (n~) vn → vn =

(
e2

4πεo~

)
1

n

By multiplying the numerator and denominator by c, the speed of light, we obtain
the following equation for vn:

vn =

(
e2

4πεo~c

)
c

n
= α

c

n
(4)

where α is a dimensionless constant called the fine structure constant, ∼ 1/137.
Thus, an electron in the n = 1 state (also called the ground state), has a velocity of
c/137, or approximately ∼ 1% of the speed of light. Note, as the principle quantum
number n increases, the speed of the electron decreases.

Substitute vn from Eq. 4 into Eq. 2, we find that

e2

4πεo
= (mvnrn) vn →

(
e2

4πεo~c

)
~c = (m

αc

n
rn)

αc

n

α~c =
mc2α2rn

n2 → rn =
n2~
mαc

(5)

In the ground state (n = 1), the ground-state radius would be

r1 =
12~
mαc

= 0.0529 nm (6)

a radius that agrees very well with the radius of the hydrogen atom.
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Exercise: Using the following conversion (1 eV = 1.602× 10−19 joules) and
h = 6.626× 10−34 J·s, show that:
a) mec

2 ' 511, 000 eV, and
b) ~c ' 197 eV·nm
c) hc ' 1240 eV·nm

You will find that these three definitions are used over and over again in atomic
physics, so, these are worth remembering. For example, these definitions can be
used to simply the calculation performed in Eq. 6.

Finally, a third parameter that can be calculated using the Bohr model is the total
energy of the electron as it orbits the proton. This can be written as the sum of
the kinetic and potential energies.

E =
1

2
mev

2 − e2

4πεor
(7)

Using the results for vn and rn, we can rewrite Eq. 7 using quantized values:

En =
1

2
mev

2
n −

e2

4πεorn
(8)

Substituting the results for vn and rn, we find that the energies levels are quantized
and described by the following equation:

En = − 1

2
mec

2 α2

n2 (9)

Substituting the value n = 1, we can calculate the ground-state energy to be the
following:

E1 = − 13.6 eV

Once again, if we compare this results to the ground-state energy of the hydrogen
atom, we find it is in excellent agreement.

Question: How well does Eq. 9 describe the light emitted from the hydrogen
atom?
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To answer this question, let’s apply the conservation of energy to this isolated
system. Furthermore, let’s assume that the electron is initially in the n = 3 state
and makes a transition to the n = 2 state. As part of the transition, a photon of
energy hc/λ is emitted in order to conserve the total energy of the system. The
conservation of energy can be written as:

Ebefore = Eafter → E3 = E2 +
hc

λ
where λ is the wavelength of the emitted photon.

E3 − E2 =
hc

λ
→ −1

2
mec

2α
2

32 −
(
−1

2
mec

2α
2

22

)
=

hc

λ

1

2
mec

2α2
(

1

22 −
1

32

)
=

hc

λ
→ 5

72
mec

2α2 =
hc

λ

or

λ =
72

5

hc

mec2α2

Using the identity hc = 1240 eV·nm, we find that the wavelength λ is:

λ =
72

5

1240 eV · nm

511, 000 eV
( 1

137

)2 = 655.8 nm

which is very close to the value of 656 nm (red) spectral line measured in the
laboratory. This is often refered to as the Hα (H-alpha) line. Here again, we have
another confirmed prediction of the Bohr theory!

3 Conclusion

As a result of the Bohr hypothesis (L = n~), we have three simple results (i.e.,
predictions) about the electron as it orbits the proton in the hydrogen atom:

vn = α
c

n
(velocity) (10)
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rn =
n2~

meαc
(radius) (11)

En = − 1

2
mec

2 α2

n2 (total energy) (12)

While the first prediction is impossible to verify, the other two predictions agree
very well with the laboratory measurements made on the hydrogen atom. Fur-
thermore, the last prediction (Eq. 12), along with conservation of energy, describes
very well the wavelengths observed from the hydrogen atom as electrons cascade
downward from higher n states to lower n states.
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